(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(+(x, 0)) → f(x)
+(x, +(y, z)) → +(+(x, y), z)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(+(z0, 0)) → f(z0)
+(z0, +(z1, z2)) → +(+(z0, z1), z2)
Tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
S tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
K tuples:none
Defined Rule Symbols:

f, +

Defined Pair Symbols:

F, +'

Compound Symbols:

c, c1

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(+(z0, 0)) → c(F(z0))
We considered the (Usable) Rules:

+(z0, +(z1, z2)) → +(+(z0, z1), z2)
And the Tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(+(x1, x2)) = [1] + [2]x1   
POL(+'(x1, x2)) = 0   
POL(0) = [4]   
POL(F(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(+(z0, 0)) → f(z0)
+(z0, +(z1, z2)) → +(+(z0, z1), z2)
Tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
S tuples:

+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
K tuples:

F(+(z0, 0)) → c(F(z0))
Defined Rule Symbols:

f, +

Defined Pair Symbols:

F, +'

Compound Symbols:

c, c1

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
We considered the (Usable) Rules:

+(z0, +(z1, z2)) → +(+(z0, z1), z2)
And the Tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(+(x1, x2)) = [4] + [2]x1 + x2   
POL(+'(x1, x2)) = [4]x2   
POL(0) = 0   
POL(F(x1)) = [3]x1   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(+(z0, 0)) → f(z0)
+(z0, +(z1, z2)) → +(+(z0, z1), z2)
Tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
S tuples:none
K tuples:

F(+(z0, 0)) → c(F(z0))
+'(z0, +(z1, z2)) → c1(+'(+(z0, z1), z2), +'(z0, z1))
Defined Rule Symbols:

f, +

Defined Pair Symbols:

F, +'

Compound Symbols:

c, c1

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))